If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+18x-36=0
a = 6; b = 18; c = -36;
Δ = b2-4ac
Δ = 182-4·6·(-36)
Δ = 1188
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1188}=\sqrt{36*33}=\sqrt{36}*\sqrt{33}=6\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-6\sqrt{33}}{2*6}=\frac{-18-6\sqrt{33}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+6\sqrt{33}}{2*6}=\frac{-18+6\sqrt{33}}{12} $
| 3x+4x+8x=6x+63 | | x-4=10/2 | | 4(5+2a)=44 | | 3x+.1=7 | | X/2+y/4=7 | | 5x9=-4 | | 40=14n | | 5x=8=20 | | 31.25=v/5 | | 2x^2-64x+252=0 | | 8-9x=15x+7+3x. | | 29=24-x | | 16+3x=4+x | | -8(-x-4)-4=-2(x+1) | | 7w-w-5w=8 | | 7q-6q-q+3q-q=12 | | 4y-3y-y+y=16 | | -11g+3g-13g+18g=18 | | 3(w–7)=12 | | 8s+3s-6s+4s-8s=13 | | 1=r5 | | -5b+6b-2b=-17 | | (-4,5);m=4 | | 0.5m(2m-3)-0.8=2.7 | | 10x+8=6-8(x+4) | | 12y-y=12 | | 6x+4=3x=2 | | -3(2x-4)=4(3-x) | | 29=b−2 | | 7b77=7b | | 2112b=211 | | 3x-18=42-2x |